TABLE OF CONTENTS
S3Methods/summary.splinesurv [ Functions ]
NAME
summary.splinesurv --- creates an object of class summary.splinesurv
FUNCTION
Summarizes a splinesurv fit. See package documentation for details.
SYNOPSIS
3576 summary.splinesurv <- function(object, quantiles = c(.025, .975), ...)
SOURCE
3579 { 3580 x <- object 3581 out <- NULL 3582 # Extract components of the fit that should be included in the summary 3583 out$call <- x$call 3584 out$coef <- as.matrix(x$posterior.mean$coefficients, ncol = 1) 3585 colnames(out$coef) <- "mean" 3586 out$iter <- x$control$iter 3587 out$burnin <- x$control$burnin 3588 out$hazard <- x$hazard 3589 out$frailty <- x$frailty 3590 # compute frailty variance using two estimators: 3591 # as the mean of the variances of the posterior densities 3592 fvar <- post.fvar(x, quantiles) 3593 # or as the variance of the posterior frailty samples 3594 fvar2 <- apply(x$history$frailty[(out$burnin + 1):out$iter, ], 1, var) 3595 out$frailty$spline.fvar <- fvar$mean["spline.fvar", ] 3596 out$frailty$param.fvar <- fvar$mean["param.fvar", ] 3597 out$frailty$fvar <- fvar$mean["fvar", ] 3598 out$frailty$fvar2 <- mean(fvar2) 3599 out$posterior.mean <- x$posterior.mean 3600 out$quantiles.coef <- NULL 3601 if(out$iter < out$burnin) out$burnin <- 0 3602 # Compute posterior quantiles of regression coefficients 3603 if(length(quantiles)){ 3604 goodind <- (out$burnin + 1):(out$iter) 3605 goodcoef <- x$history$coefficients[goodind, ,drop = FALSE] 3606 for(q in quantiles){ 3607 out$quantiles.coef <- cbind(out$quantiles.coef, 3608 apply(goodcoef, 2, function(x) quantile(x, q))) 3609 } 3610 # For presentation, make sure the colnames and rownames are nice 3611 colnames(out$quantiles.coef) <- paste(quantiles * 100, "%", sep = "") 3612 rownames(out$quantiles.coef) <- rownames(out$coef) 3613 out$quantiles.fvar <- fvar$quantiles 3614 out$quantiles.fvar2 <- quantile(fvar2, quantiles) 3615 } 3616 # save the dots for printing parameters 3617 out$dots <- as.list(substitute(list(...)))[ - 1] 3618 class(out) <- "summary.splinesurv" 3619 return(out) 3620 }