TABLE OF CONTENTS
S3Methods/post.fvar [ Functions ]
NAME
post.fvar --- compute posterior frailty variance
FUNCTION
Compute the posterior mean frailty variance and its quantiles by weighing posterior spline and parametric component frailty variances together. The former is computed at each iteration as the variance of the density defined by the current set of knots and parameters for the frailty spline.
SYNOPSIS
3639 post.fvar <- function(x, quantiles = c(.025, .975))
INPUTS
x an object of class splinesurv quantiles a list of quantiles at which to compute
OUTPUTS
means a vector containing the overall frailty variance, the variance of the spline component, and the variance of the parametric component quantiles a matrix containing the same for each given quantile
SOURCE
3642 { 3643 goodind <- (x$control$burnin + 1):(x$control$iter) 3644 # spline component 3645 if(hasspline(x$frailty)) spline.fvars <- x$history$frailty.spline.fvar[goodind] else 3646 spline.fvars <- NULL 3647 # parametric component 3648 if(haspar(x$frailty)) 3649 param.fvars <- exp(x$history$frailty.param.par[goodind, ,drop = FALSE]) else 3650 param.fvars <- NULL 3651 # weigh the two components 3652 if(haspar(x$frailty) & hasspline(x$frailty)){ 3653 weights <- x$history$frailty.weight[goodind, ,drop = F] 3654 fvars <- weights * spline.fvars + (1 - weights) * param.fvars 3655 }else{ 3656 if(haspar(x$frailty)) fvars <- param.fvars else fvars <- spline.fvars 3657 } 3658 # compute means 3659 fvar.means <- suppressWarnings(rbind(mean(fvars), mean(spline.fvars), mean(param.fvars))) 3660 # compute quantiles 3661 fvar.quantiles <- suppressWarnings(rbind(quantile(fvars, quantiles), 3662 quantile(spline.fvars, quantiles), quantile(param.fvars, quantiles))) 3663 rownames(fvar.means) <- rownames(fvar.quantiles) <- c("fvar", "spline.fvar", "param.fvar") 3664 return(list(mean = fvar.means, quantiles = fvar.quantiles)) 3665 }